Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


Воспользуйтесь формой поиска по сайту, чтобы найти реферат, курсовую или дипломную работу по вашей теме.

Поиск материалов

Термодинамическое и статистическое описание классических равновесных ансамблей

Физика

Основания молекулярно-кинетической теории. В настоящее время не вызывают сомнений утверждения, лежащие в основе молекулярно-кинетической теории:

1. Все тела состоят из относительно устойчивых частиц (молекул и атомов);

2. Молекулы находятся в постоянном хаотическом движении;

3. Молекулы взаимодействуют друг с другом.

Эти утверждения носят настолько общий характер, что невозможно указать небольшой набор каких-либо конкретных экспериментов, полностью их доказывающих.

В пользу первого положения прежде всего свидетельствуют сами факты существования таких разделов естествознания, как химия и молекулярная физика, в которых на оснолве гипотезы о молекулярном строении вещества делается множество конкретных выводов, прекрасно согласующихся с экспериментом. В физике имеется множество косвенных методов, позволяющих определять форму, размеры и расположение молекул, данные этих методов согласуются друг с другом. Созданный сравнительно недавно туннельный микроскоп позволяет визуализовать отдельные атомы и молекулы, расположенные на гладкой поверхности проводящего кристалла.

Предположение о хаотическом движении молекул впервые было высказано ботаником Броуном, наблюдавшим незначительные перемещения частичек пыльцы цветка, помещенных в жидкость. Методами своей науки Броун убедился в ошибочности своего исходного предположения, что частицы пыльцы являются живыми существами, обладающими способностью самостоятельного движения, и отнес причину их случайных блужданий к передаче импульса в результате случайных ударов со стороны хаотически перемещающихся молекул. Движением молекул объясняется явления диффузии (постепенного перемешивания различающихся веществ вблизи границы их соприкосновения), теплопередачи (постепенное выравнивание температур при соприкосновении горячих и холодных тел), распространения звука и др. В опыте Штерна была осуществлена непосредственная демонсрация движения молекул горячих паров металла и получена информация о скоростях этого движения.

Наличием взаимодействия молекул объясняется факт возможности существования вещества в различных агрегатных состояниях. Природа сил, возникающих между молекулами - электрическая. На больших расстояниях полярные молекулы притягиваются друг к другу как электрические диполи, на малых - притяжения сменяется отталкиванием близкорасположенных ядер (рис. 7_1). Как видно, существует два значения межмолекулярных расстояний, при которых любая пара молекул будет находиться в равновесии: Ro и бесконечность. В природе реализуются оба типа равновесных состояний. Первое относится к конденсированным состояниям вещества (т. е. жидкостям и твердым телам; различие между ними состоит в наличии кристаллической решетки у последних), второе - к газообразным состояниям. Очевидно, что при изменении объемов, занимаемых конденсированным веществом, неизбежно возникновение больших внутренних сил, обусловленных взаимодействиями между молекулами. Возрастание давления газов при изменении объема связано не с наличием сил взаимодействия между его молекулами, а с увеличением частоты ударов молекул о стенки сосуда.

Основные подходы к описанию макроскопических порций вещества. Поскольку вещество состоит из частиц - молекул, возникает очевидное желание получить описание его свойств в результате решения динамической задачи о движении всех частиц. Как уже отмечалось, адекватное описание движения микроскопических частиц возможно лишь на языке вантовой механики. Однако в случаях, когда частицы оказываются почти свободными, описывающие их уравнения квантовой механики переходят в законы движения ньютона. Т. о. возникает принципиальная возможность получить правильное описание поведения вещества в газообразной форме, используя подходы классической физики. Реально подобная динамическая задача не может быть решена из-за фантастически большого числа частиц, образующих макроскопические порции вещества (например, в 1кг молекулярного водорода число молекул составляет, т. е. настолько огромно, что одна только проблема записи результатов расчета всех координат оказывается заведомо невыполнимой).

Более плодотворным оказался феноменологический подход к созданию теории вещества, состоящий в введении новых термодинамических характеристик, удобных для описания макроскопических ансамблей (массы, давления, температуры, объема и энтропии), и экспериментального исследования связей между ними. Основным результатом такого подхода была формулировка уравнения состояния идеального газа (уравнения Менделеева-Клайперона):

(1)

и уравнений теплового баланса, долгое время вполне удовлетворявших практическим потребностям теплофизики.

Несмотря на успехи, описанный подход не мог считаться удовлетворительным, поскольку не соответствовал принципу экономии мышления и содержал новые величины и понятия, никак не связанные с уже имевшимися в фундаментальных теориях. В результате был разработан статистический подход, являющийся своеобразным компромиссом между двумя рассмотренными. В его рамках ставится задача вычисления не набора динамических переменных всех частиц системы, а их средних значений. Эти средние сказываются тесно связанными с термодинамическими характеристиками вещества. Т. о. статистический подход позволяет установить более глубокий физический смысл феноменологически введенных термодинамических величин и объяснить природу связывающих их закономерностей.

Распределение Максвелла. Первым удачным опытом реализации статистического подхода в теории вещества было решение задачи о распределении по скоростям молекул идеального газа (газа, расстояния между молекулами которого значительно превышают размеры молекул, и в котором притяжение молекул играет существенно меньшую роль, чем межмолекулярное отталкивание). Исходными предпосылками, позволившими решить задачу, были:

1.) Газ находится в состоянии термодинамического равновесия (т. е. его макроскопические параметры и средние значения микроскопических параметров не изменяются во времени).

2.) Все столкновения молекул происходят по законам упругого удара (т. е. при каждом столкновении выполняются законы сохранения импульса и механической энергии).

3.) Пространство, заполненное газом, является однородным и изотропным (это требование, например, предполагает отсутствие силы тяжести и каких-либо других внешних силовых полей).

4.) Молекулы обладают тремя степенями свободы (т. е. не способны вращаться и совершать колебаний).

5.) Движение молекул происходит независимо вдоль каждой из координатных осей.

Перечисленные допущения позволили чисто математически (без каких-либо дополнительных физических требований) рассчитать функцию распределения молекул по скоростям f (v), с помощью которой вероятность обнаружения молекулы, составляющие вектора скорости которой лежат в интервалах

(1),

вычисляется по формуле:

(2).

Найденное Максвеллом распределение имело вид:

(3).

Соответствующие графики при различных абсолютных температурах приведены на рис. 7_1, из которых видно, что при любых температурах наибольшая вероятность соответствует скоростям молекул, лежащим в области нуля. Увеличение температуры вызывает лишь относительное увеличение доли быстрых молекул. При T->0 распределение локализуется в раионе точки v=0, что означает исчезновение теплового движения молекул.

Из полученного Максвеллом распределения (3) непосредственно следуют выражения, связывающие термодинамические величины (температуру и давление) с механическими (кинетическая энергия и концентрация частиц):

(4),

(5).

Из уравнений молекулярно-кинетической теории (4) и (5), в свою очередь, следует уравнение состояния идеального газа (1) и объясняются все имперически - найденные газовые законы (например, увеличение давления при нагревании происходит из-за того, что появившаяся группа более быстрых молекул чаще ударяет о стенки сосуда и передает им при каждом ударе больший импульс).

Разработанный Максвеллом подход позволил не только объяснить уже известные законы поведения газа, но и обобщить их на случаи, не описываемые уравнением состояния (1) (поведение газа в силовом поле и при концентрациях, когда приближение идеального газа становится неприменимым).

Распределение Больцмана является естественным обобщением (3) на случай газа, находящегося под действием внешних сил. При их отсутствии (и, следовательно, равной нулю потенциальной энергии) экспоненциальный множитель содержал отношение кинетической и средней тепловой энергий. Учет наличия сил, очевидно, может быть осуществлен заменой (3) на

(6).

Так, поскольку вблизи поверхности Земли потенциальная энергия молекулы с массо m равна U=mgh, из (6) следует, что вероятность найти молекулу на определенной высоте (а вместе с ней и плотность и давление газа) уменьшается по экспоненциальному закону:

(7)

тем быстрее, чем больше масса молекул газа (рис. 7_2). На этом свойстве основаны многочисленные методы разделения смесей веществ с различными молекулярными весами (отстаивание и центрифугирование).

Нестабильность атмосфер планет. Предсказываемый формулой (7) экспоненциально-быстрый спад до 0 концентрации газа на больших высотах (сравнимых с радиусом планеты) оказывается ошибочным из-за того, что в указанной области приближеной выражение для потенциальной энергии U=mgh становится неприменимым. Подстановка точного выражения

(8)

в (7) показывает, что даже при бесконечно-большом удалении от планеты концентрация газа не должна падать до нуля. Физически это означает, что газ из атмосфер планет должен перетекать в открытый космос до тех пор, пока там не установится конечное давление. Учитывая колоссальное различие объемов пустого космического пространства и атмосфер планет, из сказанного легко понять, что равновесные атмосферы у шарообразных космических тел невозможны. Скорость потери планетой ее атмосферы сильно зависит от ее температуры и массы: в космос улетают лишь те молекулы, чья скорость превосходит вторую космическую. Как видно из распределения Максвелла, вероятность обнаружить быструю молекулу весьма быстро спадает с увеличением скорости. Поэтому более массивные планеты (Земля, Венера) теряют свою атмосферу значительно медленнее, чем легкие (Марс, Луна).

Молекулярно-кинетическая теория и «первое начало термодинамики». Молекулярно-кинетическая теория позволила дать простое объяснение так называемому первому началу термодинамики. Этот весьма общий закон первоначально был сформулирован в результате обобщения опыта многочисленных неудачных попыток создания вечного двигателя первого рода - весьма привлекательного с экономической точки зрения технического устройства, способного производить механическую работу, большую чем подведенная к нему тепловая (или другая) энергия. Одной из формулировок первого начала является утверждение о невозможности подобного устройства, другой - закон сохранения энергии, записываемый в виде:

(9),

где второе слагаемое описывает «невосполнимую потерю» части подведенной к устройству энергии.

Согласно общему закону сохранения, энергия не исчезает, а переходит в другие формы. С точки зрения молекулярно-кинетической теории введенная в (9) дополнительная величина u (т. н. внутренней энергия) имеет простой механический смысл и представляет собой сумму кинетических энергий теплового движения всех молекул и потенциальных энергий их взаимодействия. Т. о. часть подводимой к двигателю (или любой другой термодинамической системе) энергии тратится на ее нагревание.

Применение статистического подхода в других областях естествознания. Впоследствии объединенное распределении Максвелла-Больцмана было получено из весьма общих соображений, справедливых не только для идеальных газов, но и для других равновесных статистических ансамблей, в которых вероятность нахождения объекта в рассматриваемом состоянии не зависит от числа уже имеющихся объектов в этом состоянии. Так распределения типа (6) часто встречаются в физике плазмы, физике растворов, в химии, имеется опыт их успешного применения в таких мало похожих на идеальный газ системах, как, например, не связанные с атомами электроны в проводящих кристаллах и даже электронные оболочки атомов с большими порядковыми номерами. Представляется весьма вероятным, что сходные подходы могут быть плодотворными и в других областях, где сложность рассматриваемых систем не позволяет производить точные расчеты поведения каждого отдельного элемента - биологии, экономике, социологии (например, автору известны не претендующие на большую серьезность попытки физиков вывести аналогичные максвелловским функции распределения людей по деньгам, городов по населению и т. п.).


Описание предмета: «Физика»

Физика (От греч.Physis – природа) - наука, изучающая наиболее общие свойства материального мира.

По изучаемым объектам физика подразделяется: - на физику элементарных частиц; - на физику атомных ядер; - на физику твердого тела; - на физику плазмы и т.д.

В физике различают несколько разделов: Атомная физика - раздел физики, в котором изучают строение и состояние атомов. Теоретической основой атомной физики является квантовая механика. Основными разделами атомной физики являются: теория атома, атомная спектроскопия, рентгеновская спектроскопия, радиоспектроскопия, физика атомных и ионных столкновений.

Биофизика - научная дисциплина, изучающая: - физические и физико-химические процессы в живых организмах; а также - физическую структуру биологических систем на всех уровнях их организации.

Геофизика (Geophysics от греч.Ge - земля + Physice - основы естествознания) - комплекс наук о Земле, изучающих внутреннее строение, физические свойства и процессы, происходящие в ее геосферах. Соответственно в составе геофизики выделяют физику твердой Земли, физику атмосферы, гидрофизику.

Агрофизика - раздел физики, изучающий: - процессы в почве и растениях; - методы и средства регулирования физических условий жизни сельскохозяйственных культур для ускорения их созревания и повышения урожайности.

Гидрофизика - наука, изучающая физические свойства и процессы, происходящие в гидросфере Метафизика - противоположный диалектике метод мышления и познания рассматривающий предметы и явления в состоянии покоя.

Молекулярная физика - раздел физики, изучающий физические свойства тел, особенности агрегатных состояний вещества и процессы фазовых переходов в зависимости от молекулярного строения тел, сил межмолекулярного взаимодействия и характера теплового движения частиц.

Радиофизика - раздел физики, изучающий физические процессы, происходящие в элементах и системах радиоэлектроники: - колебания и волны в электрических цепях; - электронные процессы в различных средах; - распространение радиоволн.

Социальная физика - направление в социальной философии, рассматривающее общество как часть природы, а законы социального мира как аналоги законов естествознания.

Статистическая физика - раздел физики, изучающий поведение систем с очень большим числом частиц в состоянии локального равновесия.

Статистическая физика: - изучает закономерности, присущие всей совокупности частиц, с помощью вероятностных методов; - истолковывает физические свойства макросистем, непосредственно наблюдаемые на опыте и проявляющиеся как усредненный результат действия отдельных частиц; - базируется на основных положениях молекулярно-кинетической теории.

Физика атмосферы - наука, изучающая физические свойства и процессы, происходящие в атмосфере.

Физика твердой Земли - наука, изучающая физические свойства и процессы, происходящие в литосфере, мантии и ядре Земли.

Ядерная физика - раздел физики, изучающий структуру и свойства атомных ядер, а также их столкновения (ядерные реакции).

Литература

  1. В.С. Анищенко, Т.Е. Вадивасова, Л.Шиманский-Гайер. Динамическое и статистическое описание колебательных систем. – М.: НИЦ "Регулярная и хаотическая динамика", Институт компьютерных исследований, 2005. – 146 с.
  2. И.А. Квасников. Термодинамика и статистическая физика. Том 3. Теория неравновесных систем. – М.: Едиториал УРСС, 2003. – 448 с.
  3. А.И. Олемской. Синергетика сложных систем. Феноменология и статистическая теория. – М.: Красанд, 2013. – 384 с.
  4. И.Н. Топтыгин. Современная электродинамика. Часть 2. Теория электромагнитных явлений в веществе. – М.: НИЦ "Регулярная и хаотическая динамика", 2005. – 848 с.
  5. Ю.Л. Климонтович. Турбулентное движение и структура хаоса. Новый подход к статистической теории открытых систем. – М.: КомКнига, 2010. – 328 с.
  6. В.И. Кляцкин. Очерки по динамике стохастических систем. – М.: Красанд, 2012. – 448 с.
  7. Д.Рюэль. Термодинамический формализм. Математические структуры классической равновесной статистической механики. – М.: Институт компьютерных исследований, 2002. – 288 с.
  8. А.И. Олемской. Синергетика сложных систем. Феноменология и статистическая теория. – М.: Красанд, 2009. – 384 с.
  9. А.И. Раздорский. Историко-статистические описания епархий Русской православной церкви. 1848-1916. Сводный каталог и указатель содержания. – М.: Российская национальная библиотека, 2007. – 960 с.
  10. И.П. Базаров, Э.В. Геворкян, П.Н. Николаев. Задачи по термодинамике и статистической физике. – М.: Ленанд, 2014. – 352 с.
  11. Ю.Л. Климонтович. Турбулентное движение и структура хаоса. Новый подход к статистической теории открытых систем. – М.: Ленанд, 2014. – 328 с.
  12. Квасников И.А. Термодинамика и статистическая физика: Теория неравновесных систем. – М.: , 2016. –  с.
  13. Квасников И.А. Термодинамика и статистическая физика: Теория неравновесных систем. – М.: , 2016. –  с.
  14. Историко-статистическое описание Санкт-Петербургского Петропавловского кафедрального собора. О жизни и трудах протоиерея Иоакима Семеновича Кочетова. Церковно-исторический месяцеслов Свято-Троицкой Сергиевой лавры. Конволют. – М.: , 1857. – 292 с.
  15. И.А. Квасников. Термодинамика и статистическая физика. Теория равновесных систем. Статистическая физика. Том 2. – М.: Либроком, 2018. – 436 с.
  16. И.А. Квасников. Термодинамика и статистическая физика. Теория равновесных систем. Термодинамика. Том 1. – М.: Либроком, 2019. – 328 с.
  17. И.А. Квасников. Термодинамика и статистическая физика. Теория равновесных систем. Термодинамика. Том 1. – М.: Editorial URSS, 2018. – 328 с.


Образцы работ

Тема и предметТип и объем работы
Брэндинг - технология создания, продвижения и обслуживания торговой марки
PR
Диплом
166 стр.
Культурно-исторические центры России: современное состояние и перспективы развития
Туризм
Диплом
79 стр.
Сущность выборочного метода. средняя ошибка выборки и методы ее расчета
Статистика
Реферат
11 стр.
Особенности налогового администрирования налога на добавленную стоимость в банках
Банковское и биржевое дело
Другое
92 стр.



Задайте свой вопрос по вашей проблеме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.

Внимание!

Банк рефератов, курсовых и дипломных работ содержит тексты, предназначенные только для ознакомления. Если Вы хотите каким-либо образом использовать указанные материалы, Вам следует обратиться к автору работы. Администрация сайта комментариев к работам, размещенным в банке рефератов, и разрешения на использование текстов целиком или каких-либо их частей не дает.

Мы не являемся авторами данных текстов, не пользуемся ими в своей деятельности и не продаем данные материалы за деньги. Мы принимаем претензии от авторов, чьи работы были добавлены в наш банк рефератов посетителями сайта без указания авторства текстов, и удаляем данные материалы по первому требованию.

Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
Наташа, 09.03
Юлия здравствуйте я заказывала у вас работу :, извините что так поздно пишу, за работу получила одна из группы 5, у нашего профессора, хотелось сказать вам большое спасибо!