Написать рефераты, курсовые и дипломы самостоятельно.  Антиплагиат.
Студенточка.ru: на главную страницу. Написать самостоятельно рефераты, курсовые, дипломы  в кратчайшие сроки
Рефераты, курсовые, дипломные работы студентов: научиться писать  самостоятельно.
Контакты Образцы работ Бесплатные материалы
Консультации Специальности Банк рефератов
Карта сайта Статьи Подбор литературы
Научим писать рефераты, курсовые и дипломы.


Воспользуйтесь формой поиска по сайту, чтобы найти реферат, курсовую или дипломную работу по вашей теме.

Поиск материалов

Безопасность жизнедеятельности

Безопасность жизнедеятельности

Работа с программным пакетом Electronics Workbench представляет собой работу за компьютером. Для организации работы необходимы: персональные компьютеры с соответствующей периферией. При работе на ЭВМ оператор выполняет следующие функции: ввод данных и их обработку, запрос и приём информации.

При работе на оператора оператора воздействуют следующие факторы: радиация монитора, шум и вибрация работы вентиляторов блока питания и принтеров, мерцание монитора (50-120Гц), монотонность работы, длительное нахождение в сидячем положении и постоянное напряжение зрительной системы.

Ввод данных может осуществляться множеством способов: ввод данных с помощью клавиатуры, считывание с различных накопителей (CD-ROMов, флоппи-дисков, магнитооптических дисков, и др.), с помощью сканеров и другого оборудования. Наиболее важным и распространённым является ввод данных посредством клавиатуры, но он является и самым утомительным. Если оператор не обладает навыками печати вслепую десятипальцевым методом, то большой объём вводимой информации является довольно тяжёлой и сложной задачей. При этом усталость появляется уже через короткий промежуток времени. И на протяжении длительного периода это может привести к неблагоприятным последствиям, изменениям в костной ткани, болезням суставов.

Кроме ввода данных, оператор осуществляет запрос и приём информации. Приём информации может осуществляться как в письменной форме, так и в электронной. В письменной - информация поставляется на бумаге, в электронной - информация поставляется с помощью компьютерных сетей и различных накопителей (дискет). Скорость обработки поступающей информации во многом зависит от профессиональной подготовленности оператора и его индивидуальных качеств. Для приёма и обработки информации оператор кроме аппаратных средств использует и программное обеспечение, которое требует профессиональной подготовки и умственного напряжения для работы с самой программой обработки информации (базы данных, текстовые редакторы и др.). С учётом изложенного, на эту работу требуется профессионально подготовленный оператор.

При работе с дисплеем оператор подвергается воздействию некоторых вредных факторов: радиации, излучаемой электронно-лучевой трубкой, монотонностью выполняемой работы, длительному пребыванию в сидячем положении и постоянной нагрузке на зрительную систему. Кроме этого, оператор подвергается шумовому воздействию, которое возникает вследствие работы вентиляторов, установленных внутри корпуса системного блока компьютера, работы принтеров (особенно матричных), работы кондиционеров и т. д.

Для уменьшения воздействия радиации, излучаемой электронно-лучевой трубкой дисплея, применяют стеклянные или сеточные фильтры, уменьшающие мерцание, повышающие контрастность и чёткость изображения, или используют современные мониторы со спецификацией «low radiation», которые можно использовать без защитных экранов, так как они покрыты специальным антибликовым составом для лучшего восприятия изображения и для уменьшения отражения внешнего освещения.

Кроме утомления зрительной системы, идёт утомление шеи и спины. Для уменьшения воздействия этих факторов следует придерживаться следующего режима работы:

1) периодически делать короткие перерывы для отдыха (через 30 минут работы)

2) периодически делать разминку. Выполнить несколько простых физкультурных упражнений для неработающих мышц.

Размещение технических средств и кресла оператора в рабочей зоне должно обеспечивать удобный доступ к основным функциональным узлам и блокам аппаратуры для проведения технической диагностики, профилактического осмотра и ремонта; возможность быстро занимать и покидать рабочую зону; исключение случайного приведения в действие средств управления и ввода информации; удобную рабочую позу и позу отдыха /9/.

Для уменьшения воздействия нагрузки на зрительную систему и для уменьшения воздействия монотонности работы дисплей размещаем на столе или подставке так, чтобы расстояние от глаз до экрана не превышало 700 мм (оптимальное расстояние 460-500 мм). В общем случае расстояние наблюдения выбирается в зависимости от высоты (Н) и угловых размеров (?) знака: L=H/tg (?/2) - расстояние то глаз до дисплея. Для букв и цифр рекомендуется значение ? от 15 до 18. Экран дисплея по высоте располагаем так, чтобы угол между нормалью к центру экрана и горизонтальной линией взгляда составлял 200. В горизонтальной плоскости угол наблюдения экрана не должен превышать 600. Клавиатуру размещаем на столе или подставке так, чтобы высота расположения клавиатуры по отношению к полу составляла 650-720 мм. При размещении пульта на стандартном столе высотой 750 мм необходимо использовать кресло с регулируемой высотой сидения (380-450мм) и подставку для ног. Желательно использование стула с жёсткой спинкой вместо мягкого, во избежание сутулости оператора /9/.

Документ (бланк) для ввода данных располагаем на расстоянии 450-500мм от глаз оператора, преимущественно слева, при этом угол между экраном дисплея и документом в горизонтальной плоскости должен составлять 30-400. Угол наклона клавиатуры устанавливается равным 150.

Экран дисплея, документы и клавиатуру располагаем так, чтобы перепад яркостей поверхностей, зависящий от их расположения относительно источника света, не превышал 1: 10 (рекомендуемое значение 1: 3). При номинальных значениях яркостей изображения на экране 50-100 кд. м3 освещённость документа должна составлять 300-500 лк.

Устройства документирования и другие, нечасто используемые технические средства, располагаем справа от оператора в зоне максимальной досягаемости, а средства связи слева, чтобы освободить правую руку для записей.

Рабочий стол и клавиатуру освещаем сбоку настольной лампой накаливания, при этом оставим общее освещение включенным для уменьшения резкости.

Произведём расчёт общего искусственного освещения, необходимого для данной работы.

Светильники в помещении располагаем в соответствии с правилами пожарной безопасности. для данной работы (работа с программным комплексом Electronics Workbench) используем помещение, длина которого составляет 6м, ширина 5м, высота 4м, с побеленным потолком и светлыми стенами. Расчёт ведём на основании методических указаний по расчёту производственного освещения /10/. Разряд зрительной работы определяем с учётом того, что наименьший размер объекта равен 1-5мм. По таблице 1. 2 /10/ находим, что в данном случае разряд зрительной работы VI. По этой же таблице определяем нормируемую освещённость, которая равна 150 лк.

Коэффициенты отражения потолка, стен, пола из таблицы 2. 4 /10/ соответственно 70%, 50% и 30%. Рабочая поверхность находится на высоте 1 м от пола. Так как принимаем систему общего освещения люминесцентными лампами, то высота свеса равна 0, 7м.

Рассчитаем расстояние от светильника до рабочего места:

h=4-1-0, 7=2, 3 м.

Необходимый световой поток каждого светильника рассчитывается по формуле:

Ф= (E*KЗ*S*Z) / (N*?), (5. 1)

где E - заданная минимальная освещённость;

КЗ- коэффициент запаса;

S - освещаемая площадь, м2;

Z - коэффициент неравномерности освещения, равный 1, 1-1, 2;

N - число светильников (намеченное до расчёта);

? - коэффициент использования.

Для нахождения ? рассчитаем индекс помещения I по формуле:

I=A*B/ (h* (А+B)), (5. 2)

где А - длина помещения, м;

В - ширина помещения, м;

h - расчетная высота, м.

Тогда I=6*5/ (2, 3*11) =1, 2 и ?=0, 5 из таблицы 2. 5 /10/.

Коэффициент запаса находим по таблице 1. 10 /10/ КЗ=1, 5; Z принимаем равным 1, 2. Число светильников определяем по формуле N=S/L2, где S - площадь помещения, м2; L=?*h, ? выбирается в пределах от 1, 2 до 1, 4; h - расчётная высота от светильника до рабочего места.

Тогда N=30/ (1, 2*2, 3) 2?4 (светильника).

По вышеприведённой формуле рассчитаем необходимый световой поток каждого светильника:

Ф= (E*KЗ*S*Z) / (N*?) = (150*1, 5*30*1, 2) / (4*0, 5) =397 лм. (5. 3)

На основании этого из таблицы 2. 2 /10/ выбираем лампу ЛДЦ мощностью 15 Вт с номинальным световым потоком 500 лм.

С учётом того, что длина лампы примерно 450 мм, можно предложить следующую схему расположения светильников.

Рисунок 5. 1 - Схема расположения светильников в помещении.

При работе оператора на него действуют различные шумы, создаваемые работающими принтерами (в основном матричными), вентиляторами, установленными в системном блоке компьютера, звуковыми платами или динамиками, встроенными в компьютер, кондиционерами и прочим оборудованием. Для уменьшения воздействия шума на организм оператора следует применять более современное оборудование (замена матричных принтеров на лазерные), а также производить своевременную профилактику оборудования.

Микроклимат помещения оказывает значительное влияние на оператора. Отклонение отдельных параметров микроклимата от рекомендованных значений снижают работоспособность, ухудшают самочувствие и могут привести к профессиональным заболеваниям.

В зависимости от энергозатрат организма ГОСТ 12. 1. 005-88 ССБТ «Воздух рабочей зоны, общие санитарно-гигиенические требования» предусматривает три категории работ. В соответствии с ГОСТ, работа оператора ЭВМ может быть отнесена к лёгкой физической работе категории 1б с энергозатратами организма 138-172 Дж/с или 120-150 ккал/час. Следует помнить, что в тёплый период года среднесуточная температура наружного воздуха составляет выше +100С, в холодный период года среднесуточная температура наружного воздуха составляет -100С и ниже. Оптимальная относительная влажность колеблется в пределах 40-60%.

Оптимальные нормы параметров микроклимата с учётом категории данной работы следующие: в холодный период года температура воздуха 21-230С, скорость движения воздуха не более 0, 1 м/c; в тёплый период года температура воздуха должна составлять 22-240С, скорость движения воздуха не более 0, 2м/с. Допустимые значения относительной влажности в холодный период года 75% и 60% в тёплый период года при температуре 270С. Для обеспечения данных условий микроклимата в холодное время года применяют систему центрального отопления, а в тёплое время года кондиционеры.

5. 2 Электробезопасность

Помещение, в котором осуществляется работа над программой, по степени электроопасности относятся к помещениям без повышенной опасности - помещения сухие, с нормальной температурой, изолированными полами, беспыльные, имеющие малое количество заземлённых предметов. Компьютер питается от однофазной сети переменного тока промышленной частоты с заземлённой нейтралью, напряжением 220В.

Системный блок компьютера имеет напряжения сигналов ТТЛ уровней (-1, +4 В), цифровые и аналоговые микросхемы запитываются постоянными напряжениями ?5 и ?12 В, которые получаются путем преобразования переменного напряжения 220В в блоке питания. Блок питания содержит в себе схемы преобразования напряжения, схемы стабилизации и схему защитного отключения при коротком замыкании. Так как корпус компьютера выполнен из металла, то существует опасность пробоя фазы на корпус. Мониторы современных компьютеров практически всегда изготовляются из пластика, поэтому несмотря на большое напряжение, присутствующее в мониторе, поражение током человека практически исключено.

Поскольку попадание человека под воздействие высокого напряжения в данном устройстве возможно только по причине аварии (пробой изоляции), то рассчитаем возможный ток через тело человека (Ih) при касании частей схемы, находящихся под напряжением 220В /9/.

; (5. 4)

(5. 5)

где U-напряжение токоведущих элементов, В,

Rh=1000 Ом- сопротивление тела человека.

Полученное значение выше смертельного порога (0. 1А для переменного тока), значит необходимо предусмотреть меры по защите человека от поражения электрическим током.

1) Поскольку сетевое напряжение преобразуется в отдельном блоке (блоке питания), то необходимо выполнить его в закрытом металлическом корпусе и электрически соединить его с корпусом всего устройства в целом;

2) Заземлить корпус всего компьютера, посредством заземляющего вывода в сетевом шнуре или отдельным заземляющим проводом;

3) Применить сетевой шнур с двойной изоляцией.

Произведём расчёт защитного заземления компьютеров в ВЦ.

Для защиты от опасного напряжения прикосновения необходимо использовать защитное заземление. Наиболее эффективным является использование контурного заземлителя, размещённого по периметру здания ВЦ.

Требуемое сопротивление защитного заземляющего устройства для данного случая должно быть не более 4 Ом, т. е.

Rз? 4 Ом.

С учётом плана здания и его размеров строим предварительную схему заземлителя (рисунок 5. 2).

Рисунок 5. 2 - Схема контурного заземлителя

При этом вертикальные электроды размещаются на расстоянии а=5 м один от другого. Расчёт производим для однородной земли, где грунтом является суглинок, с удельным сопротивлением грунта р=100 Ом /м.

Заземлитель выполняется из вертикальных стержневых электродов длиной lв = 2, 5 м, диаметром d = 12 мм, верхние концы которых соединяются с помощью горизонтальных электродов - стальных полос суммарной длиной

L = 2 ? A ? 2 ? B; (5. 6)

L = 2 ? 20 ? 2 ? 15 = 70 м. (5. 7)

и сечением 25?4 мм. Горизонтальные электроды уложены на глубину t0 = 0, 8 м. Количество вертикальных электродов n = 70/5 = 14 шт.

Расчётные сопротивления растеканию тока электродов - вертикального Rв и горизонтального Rг определяются по соотношениям /8/:

где t=t0+lB / 2 = 2, 05 м; (5. 8)

Ом (5. 9)

где b =25 мм; (5. 10)

Ом. (5. 11)

Так как заземлитель контурный и n = 14 шт., то отношение

. (5. 12)

По справочным данным /8/ определяем коэффициенты использования электродов заземлителя - вертикальных и горизонтальных

?в =0, 66

?г = 0, 36

Сопротивление растеканию тока группового заземлителя рассчитывается по формуле:

Ом. (5. 13)

Это сопротивление меньше допустимого сопротивления заземления (4 Ом), что повышает безопасность эксплуатации оборудования.

В целях профилактики рекомендуется один раз в год определять сопротивление грунта.

5. 3 Противопожарные мероприятия

Здания, где установлены компьютеры, можно отнести к категории Д пожарной опасности с третьей степенью огнестойкости - здания с несущими и ограждающими конструкциями из естественных или искусственных материалов, бетона или железобетона.

Пожары на вычислительных центрах представляют особую опасность, т. к. сопряжены с большими материальными потерями. Как известно, пожар может возникнуть при взаимодействии горючих веществ, окислителя и источника зажигания. В помещениях вычислительных центров присутствуют все три фактора, необходимые для возникновения пожара.

Возникновение пожара в рассматриваемом помещении наиболее вероятно по причинам неисправности электрооборудования, к которым относятся: искрение в местах соединения электропроводки, короткие замыкания в цепи, перегрузки проводов и обмоток трансформаторов, перегрев источников бесперебойного питания и другие факторы. Поэтому подключение компьютеров к сети необходимо производить через распределительные щиты, позволяющие производить автоматическое отключение нагрузки при аварии.

Особенностью современных ЭВМ является очень высокая плотность расположения элементов электронных схем, высокая рабочая температура процессора и микросхем памяти. Следовательно, вентиляция и система охлаждения, предусмотренные в системном блоке компьютера должны быть постоянно в исправном состоянии, т. к. в противном случае возможен перегрев элементов, не исключающий их воспламенение.

Надёжная работа отдельных элементов и электронных схем в целом обеспечивается только в определённых интервалах температуры, влажности и при заданных электрических параметрах. При отклонении реальных условий эксплуатации от расчётных, также могут возникнуть пожароопасные ситуации.

Серьёзную опасность представляют различные электроизоляционные материалы. Широко применяемые компаунды на основе эпоксидных смол состоят из горючих смол, выделяющих при горении удушающие газы. Материнские платы электронных устройств, а также платы всех дополнительных устройств ЭВМ изготавливают из гетинакса или стеклотекстолита. Пожарная опасность этих изоляционных материалов невелика, они относятся к группе трудно горючих, и могут воспламениться только при длительном воздействии огня и высокой температуры /9/.

Поскольку в рассматриваемом случае при возгораниях электроустройства могут находиться под напряжением, то использовать воду и пену для тушения пожара недопустимо, поскольку это может привести к электрическим травмам. Другой причиной, по которой нежелательно использование воды, является то, что на некоторые элементы ЭВМ недопустимо попадание влаги. Поэтому для тушения пожаров в рассматриваемом помещении можно использовать либо порошковые составы, либо установки углекислотного тушения. Но поскольку последние предназначены только для тушения небольших очагов возгорания, то область их применения ограничена. Поэтому для тушения пожаров в данном случае применяются порошковые составы, так как они обладают следующими свойствами: диэлектрики, практически не токсичны, не оказывают коррозийного воздействия на металлы, не разрушают диэлектрические лаки.

Установки порошкового пожаротушения могут быть как переносными, так и стационарными, причем стационарные могут быть с ручным, дистанционным и автоматическим включением.

Автоматическая установка и установка с механическим включением отличается только средствами открытия запорного крана. В автоматических установках используются различные датчики обнаружения пожара (по дыму, тепловому и световому излучению), а в механических специальные тросовые системы с легкоплавкими замками. В настоящее время освоены модульные порошковые установки ОПА-50, ОПА-100, УАПП /9/.

Для обеспечения тушения пожара в рассматриваемом помещении применяется автоматическая стационарная установка порошкового пожаротушения УПС-500. Установка порошкового тушения состоит из сосуда для хранения порошка, баллонов со сжатым газом, редуктора, запорной аппаратуры, трубопроводов и порошковых оросителей.

В рассматриваемом помещении применим извещатели типа ИП 104, которые срабатывают при превышении температуры в помещении +60 0С. И извещатели типа ИП 212, которые срабатывают при скоплении дыма в помещении.

Для профилактики пожарной безопасности организуем обучение производственного персонала (обязательный инструктаж по правилам пожарной безопасности не реже одного раза в год), издание необходимых инструкций с доведением их до каждого работника учреждения, выпуск и вывеска плакатов с правилами пожарной безопасности и правилами поведения при пожаре. Также необходимо наличие плакатов, информирующих людей о расположении аварийных выходов из здания в случае возникновения пожара, плана эвакуации людей в аварийных ситуациях.

План эвакуации людей в случае пожара должен быть составлен таким образом, чтобы за кратчайшее время люди могли покинуть здание, не создавая пробки во время движения. Путь от дверей каждого помещения до выхода из здания должен быть по возможности минимальным. Для этого необходимо учесть расположение комнат и всех выходов из здания, включая аварийные. На рисунке 5. 3 приведен план эваукации людей при пожаре в вычислительном центре.

Рисунок 5. 3 - План эваккуации при пожаре

На данном плане показаны кратчайшие пути выхода из здания, включая аварийный выход. При этом не создаются пробки в коридорах и в дверных проходах, что позволяет покинуть помещение в кратчайшее время.


Описание предмета: «Безопасность жизнедеятельности»

Безопасность жизнедеятельности – это состояние окружающей среды, при котором с определенной вероятностью исключено причинение вреда существованию человека.

Решение проблемы безопасности жизнедеятельности состоит в обеспечении комфортных условий жизнедеятельности людей на всех стадиях жизни, в защите человека и окружающей его среды (производственной, природной, городской, жилой) от воздействия вредных факторов, превышающих нормативно-допустимые уровни.

Повреждение организма может произойти в результате как непосредственных контактных (механических, электрических, химических и т.д.), так и дистанционных (тепловых, световых и пр.) внешних воздействий.

Повреждения организма могут возникать сразу после воздействия или спустя определенное время после него.

С опасностями человек столкнулся с момента своего появления. Сначала это были природные опасности, но с развитием человеческого общества к ним прибавились техногенные, т.е. рожденные техникой.

Научно-технический прогресс наряду с благами принес и неисчислимые бедствия как человеку, так и окружающей среде. Увеличивается количество различных заболеваний (одно из последних – «синдром компьютерного зрения»), происходит интенсивное загрязнение атмосферы, увеличивается количество озоновых «дыр» и т.д.

Человек и сам является источником опасности. Своими действиями или бездействием он может создать для себя и окружающих реальную угрозу жизни и здоровья.

Опасности, создаваемые человеком, весьма разнообразны. Войны, преступления, проституция, наркомания, СПИД, голод, нищета, бескультурье – эти и другие пороки человеческого общества являются социальными опасностями.

Таким образом, опасности окружающего нас мира условно разделены на три четко выраженные группы: природные, техногенные, социальные.

Какой бы деятельностью человек не занимался, где бы ни находился, всегда рядом с ним существуют скрытые силы, представляющие для него угрозу. Это потенциальные (возможные) опасности. Постоянное наличие вокруг человека потенциальных опасностей (улица, транспорт и пр.) как в быту, так и на рабочем месте, вовсе не значит, что какое-то несчастье обязательно произойдет. Для этого необходимы определенные условия – причины.

Некоторые опасности не зависят от деятельности человека, появляются внезапно, не оставляя времени на раздумья, на спасение (аварии на транспорте, взрывы, землетрясения, ураганы и т.д.).

Для конца двадцатого века и начала двадцать первого характерно нарастание как экологических, так и иных катастроф. Поэтому людям надо прислушиваться к мнению ученых и организаций, заранее прогнозирующих различного рода бедствия и катастрофы.

Каждый человек должен предвидеть опасности и готовиться к ним заранее, быть готовым противостоять любой опасности и соблюдать основные правила безопасности жизнедеятельности: - Предвидеть и распознавать опасности и по возможности избегать их.

- Знать об окружающих нас опасностях и собственных возможностях.

- При необходимости быстро и грамотно действовать.

Главная задача возникшего научного направления «Безопасность жизнедеятельности» – анализ источников и причин возникновения опасностей, прогнозирование и оценка их воздействия на человека и среду обитания.

Как наука БЖД находится в стадии формирования. Опирается на научные достижения и практические разработки в области охраны труда, охраны окружающей среды, на достижения в профилактической медицине, основывается на законах и подзаконных актах.

Задачи науки БЖД сводятся к идентификации опасностей техносферы, разработке и использованию средств защиты от опасностей, их непрерывному контролю и мониторингу в техносфере, обучению работающих и населения основам защиты от опасностей, разработке мер по ликвидации последствий проявления опасностей.

Цель БЖД как науки – сохранение здоровья и жизни человека в техносфере, защита его от опасностей техногенного, антропогенного, естественного происхождения и создание комфортных условий жизнедеятельности.

Таким образом научные и практические знания, изложенные в дисциплине «Безопасность жизнедеятельности», позволяют минимизировать ошибочные действия людей, сделать техносферу комфортной, ограничить в ней опасности допустимыми пределами и устранить ее негативное воздействие на биосферу. [Белов С.В., Девисилов В.А. и др.

Безопасность жизнедеятельности. - М.: Высшая школа, 2002.]

Литература

  1. Безопасность жизнедеятельности. – М.: Высшая школа, 2001. – 488 с.
  2. Б.И. Зотов, В.И. Курдюмов. Безопасность жизнедеятельности на производстве. – М.: КолосС, 2006. – 432 с.
  3. А.С. Гринин, В.Н. Новиков. Безопасность жизнедеятельности. – М.: ФАИР-ПРЕСС, 2002. – 288 с.
  4. Ф.Кармазинов, О.Русак, С.Гребенников, В.Осенков. Безопасность жизнедеятельности. Словарь-справочник. – СПб.: Лань, 2001. – 304 с.
  5. Т.А. Хван, П.А. Хван. Безопасность жизнедеятельности. – Ростов-на-Дону: Феникс, 2003. – 416 с.
  6. О.Г. Мугин. Безопасность жизнедеятельности. Чрезвычайные ситуации. – М.: Мир, 2003. – 80 с.
  7. Б.И. Зотов, В.И. Курдюмов. Безопасность жизнедеятельности на производстве. – М.: КолосС, 2003. – 432 с.
  8. О.Русак, К.Малаян, Н.Занько. Безопасность жизнедеятельности. – СПб.: Лань, 2004. – 448 с.
  9. Ю.Г. Сапронов, А.Б. Сыса, В.В. Шахбазян. Безопасность жизнедеятельности. – М.: Академия, 2012. – 320 с.
  10. В.С. Алексеев, О.И. Жидкова, И.В. Ткаченко. Конспект лекций. Безопасность жизнедеятельности. – Воронеж: Научная Книга, 2012. – 0 с.
  11. Э.А. Арустамов, Н.В. Косолапова, Н.А. Прокопенко, Г.В. Гуськов. Безопасность жизнедеятельности. – М.: Академия, 2012. – 176 с.
  12. Безопасность жизнедеятельности. – М.: Академия, 2012. – 272 с.
  13. В.Ю. Микрюков. Безопасность жизнедеятельности. – М.: КноРус, 2012. – 288 с.
  14. Ю.Г. Сапронов. Безопасность жизнедеятельности. – М.: Академия, 2012. – 336 с.
  15. Ю.В. Буралев. Безопасность жизнедеятельности на транспорте. – М.: Академия, 2012. – 288 с.
  16. Безопасность жизнедеятельности. – М.: Высшая школа, 2006. – 616 с.
  17. В.Г. Еремин, В.В. Сафронов, А.Г. Схиртладзе, Г.А. Харламов. Безопасность жизнедеятельности в машиностроении. – М.: Высшая школа, 2002. – 310 с.


Образцы работ

Тема и предметТип и объем работы
Электробезопасность при работе на компьютере
Безопасность жизнедеятельности
Реферат
17 стр.
Пожарная сигнализация нефтегазовых объектов
Безопасность жизнедеятельности
Диплом
111 стр.
Военная (силовая) безопасность
Безопасность жизнедеятельности
Реферат
23 стр.
Социальная безопасность РФ и механизм ее обеспечения
Безопасность жизнедеятельность
Курсовая работа
40 стр.



Задайте свой вопрос по вашей проблеме

Гладышева Марина Михайловна

marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.

Внимание!

Банк рефератов, курсовых и дипломных работ содержит тексты, предназначенные только для ознакомления. Если Вы хотите каким-либо образом использовать указанные материалы, Вам следует обратиться к автору работы. Администрация сайта комментариев к работам, размещенным в банке рефератов, и разрешения на использование текстов целиком или каких-либо их частей не дает.

Мы не являемся авторами данных текстов, не пользуемся ими в своей деятельности и не продаем данные материалы за деньги. Мы принимаем претензии от авторов, чьи работы были добавлены в наш банк рефератов посетителями сайта без указания авторства текстов, и удаляем данные материалы по первому требованию.

Контакты
marina@studentochka.ru
+7 911 822-56-12
с 9 до 21 ч. по Москве.
Поделиться
Мы в социальных сетях
Реклама



Отзывы
Lubow
Здравствуйте! Спасибо Вам огромное-огромное!!! Я защитила дипломную работу после вашего сопровождения на отлично! Преподаватели, которые принимали работу, сказали, что работа очень замечательная и претензий к ней нет. Была самая лучшая работа на курсе!!! Я так рада, чтобы я без Вас делала, просто не знаю. Спасибо! Спасибо! Спасибо! Я обязательно всем буду рекомендовать Ваш сайт! Спасибо! Вы просто супер!